

C O N T E N T S

Introduction to Node.js

Features of Node.js

When to use Node.js

When not to use node.js

Who uses Node.js

ReadyMadeCode.com For

Node.js Tutorials

01

02

03

04

05

06

Node.js is a server-side platform built on Google Chrome's

JavaScript Engine (V8 Engine). Node.js was developed by Ryan

Dahl in 2009.

Node.js is a platform built on Chrome's JavaScript runtime

for easily building fast and scalable network applications.

Node.js uses an event-driven, non-blocking I/O model that

makes it lightweight and efficient, perfect for data-

intensive real-time applications that run across distributed

devices.

Node.js is an open source, cross-platform runtime

environment for developing server-side and networking

applications. Node.js applications can be run within the

Node.js runtime on OS X, Microsoft Windows, and Linux.

I N T R O D U C T I O N T O
N O D E . J S

1

F E A T U R E S O F N O D E . J S

Node.js is an open source server environment

Being built on Google Chrome's V8 JavaScript Engine, Node.js library is

very fast in code execution.

Node.js is free

Node.js runs on various platforms (Windows, Linux, Unix, Mac OS X,

etc.)

Node.js uses JavaScript on the server

Node.js can generate dynamic page content

Node.js can create, open, read, write, delete, and close files on the

server

Node.js can collect form data

Node.js can add, delete, modify data in your database

All APIs of Node.js library are asynchronous, that is, non-blocking. It

essentially means a Node.js based server never waits for an API to

return data. The server moves to the next API after calling it and a

notification mechanism of Events of Node.js helps the server to get a

response from the previous API call.

Node.js uses a single threaded program and the same program can

provide service to a much larger number of requests than traditional

servers like Apache HTTP Server.

Node.js applications never buffer any data. These applications simply

output the data in chunks.

It's worth pointing out that Node.js is also great for situations in which

you'll be reusing a lot of code across the client/server gap.

It runs Javascript, so you can use the same language on server and

client, and even share some code between them (e.g. for form

validation, or to render views at either end.)

2

It has become the defacto standard environment in which to run

Javascript-related tools and other web-related tools, including task

runners, minifiers, beautifiers, linters, preprocessors, bundlers and

analytics processors.

Easy learning curve. Knowing JavaScript gives a developer a good start

with Node.js. Of course, you need to know the backend development

principles, however, the knowledge of the programming language will

simplify things a lot.

Large community. Node.js, being an open-source project, encourages

support and contribution aimed at the improvement and adoption of

the platform.

Robustness - Using Node.js allows organizing full-stack JavaScript

development ensuring the speed and performance of the application.

Scalability - This is a true jewel of the Node.js development

environment, as it allows building applications that can easily grow

with your business. Node.js works great in systems using the

microservices architecture or containerization where the scalability

and flexibility can be achieved quickly and easily.

Great ecosystem - Browse npm (Node.js package manager) for 650,000

free code packages that you can reuse with Node.js.

The single-threaded event-driven system is fast even when handling

lots of requests at once, and also simple, compared to traditional

multi-threaded Java or ROR frameworks.

The ever-growing pool of packages accessible through NPM, including

client and server-side libraries/modules, as well as command-line tools

for web development. Most of these are conveniently hosted on github,

where sometimes you can report an issue and find it fixed within hours!

It's nice to have everything under one roof, with standardized issue

reporting and easy forking.

Node.js is released under the MIT license

3

F E A T U R E S O F N O D E . J S

I/O bound Applications

Data Streaming Applications

Data Intensive Real-time Applications (DIRT)

JSON APIs based Applications

Single Page Applications - All client-side scripts are loaded into a single

HTML page that works as the main entry point of the application, while

all partial views are loaded into this central template on demand.

Microservices Architecture - Microservices architecture is a way of

developing an application as a group of independent, small, and

modular services each of which runs a unique single process and plays

a specific role in the business logic.

Internet of Things - IoT (Internet of Things) is a network of devices such

as sensors, beacons, actuators, and any other items embedded with

electronics that enables them to send and exchange data. Normally,

IoT systems pass data from devices to servers and from servers to

applications that process it and display it to users.

Node.js is especially suited for applications where you'd like to

maintain a persistent connection from the browser back to the server.

Application that sends updates to the user in real time, there Node.js is

useful.

When you use something like Node.js, the server has no need of

maintaining separate threads for each open connection. This means

you can create a browser-based chat application in Node.js that takes

almost no system resources to serve a great many clients. Any time you

want to do this sort of long-polling, Node.js is a great option.

For Online games, collaboration tools, chat rooms, or anything where

what one user (or robot? or sensor?) does with the application needs to

be seen by other users immediately, without a page refresh.

4

W H E N T O U S E N O D E . J S

Node.js seems quite suitable for prototyping, agile development and

rapid product iteration.

Sockets only servers like chat apps, irc apps, etc.

Social networks which put emphasis on realtime resources like

geolocation, video stream, audio stream, etc.

Handling small chunks of data really fast like an analytics webapp. As

exposing a REST only api.

Applications that are highly event driven & are heavily I/O bound

Applications handling a large number of connections to other systems

Real-time applications (Node.js was designed from the ground up for

real time and to be easy to use.)

Applications that juggle scads of information streaming to and from

other sources

High traffic, Scalable applications

Mobile apps that have to talk to platform API & database, without

having to do a lot of data analytics

Build out networked applications

Applications that need to talk to the back end very often

5

W H E N T O U S E N O D E . J S

It runs Javascript, which has no compile-time type checking.

Added to that, many of the packages in NPM are a little raw, and still

under rapid development. Npmjs.org has no mechanism to rate

packages, which has lead to a proliferation of packages doing more or

less the same thing, out of which a large percentage are no longer

maintained.

Dealing with files can be a bit of a pain. Things that are trivial in other

languages, like reading a line from a text file, are weird enough to do

with Node.js.

Your server request is dependent on heavy CPU consuming

algorithm/Job.

Node.JS itself does not utilize all core of underlying system and it is

single threaded by default, you have to write logic by your own to

utilize multi core processor and make it multi threaded.

Node will support most of databases but best is mongodb which won't

support complex joins and others.

Compilation Errors...developer should handle each and every

exceptions other wise if any error accord application will stop working

where again we need to go and start it manually or using any

automation tool.

A complex calculation requiring a lot of processing resources may block

the flow and cause delays.

Applications with heavy computing server-side. Since Node.js uses only

one CPU core, heavy computations on the server will block all other

requests. In this case, the event-driven non-blocking I/O model which is

the strongest side of Node.js will become useless, and the application

performance will suffer.

6

W H E N N O T T O U S E N O D E . J S

CRUD applications - In this case, using Node.js does not automatically

mean poor performance. However, if you are building a simple CRUD

app with data coming directly from the server and no API is needed,

Node.js may be excessive, as its powerful features will be simply

wasted.

Server-side web applications with relational databases. The reason for

Node.js poor performance in this case is that its relational database

tools are not as advanced as those created for other platforms.

7

R E A S O N S N O T T O U S E N O D E . J S

PayPal, Netflix, Walmart, LinkedIn, Groupon, Uber, GoDaddy, Dow Jones

8

W H O U S E S N O D E . J S ?

Reference Website -

Visit ReadyMadeCode.com For Node.js Tutorials And Code

9

N O D E . J S T U T O R I A L S

https://www.readymadecode.com/category/website/nodejs/

